

PROCEDURES

FOR

MECHANICALLY GRADED LUMBER

SOUTHERN PINE INSPECTION BUREAU PENSACOLA, FLORIDA

COPYRIGHT 1997, 2000, 2001, 2003, 2013 REVISED JUNE 2020

- DISCLAIMER -

This document is copyrighted by the Southern Pine Inspection Bureau, "SPIB". It is intended for use only by SPIB subscribers in conjunction with ongoing inspection and related services provided by SPIB. This document is only part of a comprehensive program of consultation and advice, which includes instruction on the proper interpretation and application of the information set out in this document, provided by SPIB to its subscribers. SPIB subscribers are allowed to use, reproduce or distribute this document only to the extent and for the purposes permitted by the written agreement between the subscriber and SPIB. No other use, reproduction or distribution of this document, in whole or in part, is authorized without the express written permission of SPIB. The Procedures and information contained approved by the American Lumber Standards Committee and are the property of SPIB. The procedures and information are for the sole use of the subscribers of SPIB. Any further use of the procedures and information contained therein are for informational purposes only and SPIB expressly disclaims any liability for such use. SPIB assumes no responsibility for any consequence resulting from the unauthorized use, reproduction or distribution of this document.

SPIB MECHANICALLY GRADED LUMBER PROCEDURES

TABLE OF CONTENTS

GEN	IERA	L	1
SCC)PE		2
PAR	ТА-	PRODUCT REQUIREMENTS FOR MECHANICALLY GRADED LUMBER	3
1.0	G	ENERAL	3
	1.1	Standard Sizes	3
	1.2	Moisture Content	3
2.0	v	ISUAL GRADING REOUIREMENTS	
	21	MSR	3
	2.2	MSR Scaffold Plank	
	2.3	E-Rated Laminations and E-Rated Tension Laminations	6
	2.4	MSR Tension Laminations	6
	2.5	MEL	7
3.0	G	RADE-MARKING REOUIREMENTS	8
4 0	D	FSIGN VALUES	8
	41	General	9
	42	MSR F _k -F Combinations and Design Values	10
	43	MSR Scaffold Plank Combinations and Design Values	10
	4.4	MSR Tension Lamination Combinations and Design Values	
	4.5	MEL Combinations and Design Values.	
	4.6	LRFD Conversion Factors	13
5.0	N	AFCHANICAL PROPERTY REQUIREMENTS	
0.0	51	General	13
	5.2	Average Edgewise MOF	
	5.3	Minimum F	
	5.4	Long Span E (LS E)	
	5.5	Bending Strength (MOR)	
	5.6	Tension Strength (UTS)	
	5.7	Compression Strength (UCS)	
	5.8	Specific Gravity	17
6.0	R	EINSPECTION REOUIREMENTS	18
PAR	I B -	PROCEDURES FOR QUALIFACATION AND QUALITY CONTROL	20
7.0	Q	UALIFICATION PROCEDURES	20
	7.1	<i>Scope</i>	20
	7.2	Equipment and Personnel Requirements	20
	7.3	Qualification Sample Selection	20
	7.4	Qualification Sample Testing	21
	7.5	Analysis of Qualification Test Results	22
8.0	P	LANT QUALITY CONTROL PROCEDURES	23
	8.1	Scope	23
	8.2	Machine and Test Equipment Calibration	23
	8.3	Quality Control Sampling	24
	8.4	Quality Control Sample Testing	24
	8.5	Analysis of Quality Control Test Results	25
	8.6	Machine Grade Boundary Adjustments	26

SPIB MECHANICALLY GRADED LUMBER PROCEDURES

8.7	Quality Control Record Keeping	.27
8.8	Time Frame for Grade Qualifications	.28
A	GENCY QUALITY CONTROL	28
9.1	Qualification of Plants	.28
9.2	Calibration of Test Equipment	.28
<i>9.3</i>	Mill Personnel	.28
9.4	Periodic Inspections	.28
9.5	Quarterly Inspections	.28
9.6	Periodic Tension Testing	.29
NDIX	A - SHEAR CORRECTION FACTORS FOR E	A-1
NDIX	B - PROOFLOADS	B-1
NDIX	C - CUSUM QUALITY CONTROL	C-1
NDIX	D - OUT-OF-CONTROL FLOWCHARTS	D-1
NDIX	E - AGENCY FORMS	E-1
	8.7 8.8 9.1 9.2 9.3 9.4 9.5 9.6 NDIX NDIX NDIX NDIX	 8.7 Quality Control Record Keeping

GENERAL

These procedures address all forms of mechanically graded Southern Pine lumber, including Machine Stress Rated lumber, Machine Stress Rated Scaffold Plank, E-Rated Laminations, E-Rated Tension Laminations, Machine Stress Rated Tension Laminations, and Machine Evaluated Lumber.

Mechanically graded lumber is lumber that has been evaluated by ALSC Board of Review approved mechanical grading equipment. Mechanically graded lumber is distinguished from visually graded lumber in that each piece is nondestructively tested and marked to indicate a grade classification. Mechanically graded lumber is also required to meet certain visual requirements as set forth herein, and in addition, conform to all applicable provisions of current Southern Pine Inspection Bureau Grading Rules. Mechanically graded Southern Pine lumber conforming to these procedures is eligible for grade-marking.

The grade-mark on mechanically graded lumber indicates that the design value assignment system meets requirements of the grading agency's qualification and quality control procedures. The grade-mark will show the agency trademark, the mill name or number, the species identification, seasoning designation, and the grade classification. Additional requirements for the grade-mark are indicated in Section 3.0. To meet structural needs for engineered construction, a range of grade classifications is available. Depending on the mechanically graded product being produced, one or more design values will be included on the grade-mark: "E" designates the average edge Modulus of Elasticity of the grade in millions of pounds per square inch. Mechanical stress grading equipment is adjusted so that the output will average or exceed the "E" level shown on the grade-mark. "F_b" indicates the design value for extreme fiber stress in bending for edge loading, in pounds per square inch. "F_t" indicates the design value for tension stress parallel-to-grain, in pounds per square inch.

Strength property design values represent a 5% exclusion level of the property. Assigned design values have been reduced by the same factors applied to visually graded lumber in accordance with ASTM D245.

SCOPE

These Mechanically Graded Lumber Procedures consist of two parts. Part A specifies standard sizes, visual grade requirements, grade-marking and physical property requirements for mechanically graded lumber. Part A also contains standard grade designations and re-inspection provisions. Part B specifies minimum requirements for qualification and quality control. SPIB must verify compliance to these qualification requirements before production of mechanically graded lumber may commence. The quality control requirements are minimum procedures and the agencies have the right to call for an increase in the frequency of calibration, sampling and testing if individual circumstances warrant such an increase.

PART A

PART A - PRODUCT REQUIREMENTS FOR MECHANICALLY GRADED LUMBER

1.0 GENERAL

The following subsections apply to all forms of mechanically graded Southern Pine lumber, including Machine Stress Rated Lumber, MSR Scaffold Plank, E-Rated Laminations, E-Rated Tension Laminations and Machine Evaluated Lumber.

1.1 Standard Sizes

Thicl	kness	Width		
Nominal	Surfaced Dry	Nominal	Surfaced Dry	
1"	3/4"	2"	1-1/2"	
1-1/4"	1"	3"	2-1/2"	
1-1/2"	1-1/4"	4"	3-1/2"	
2"	1-1/2"	5"	4-1/2"	
2-1/2″	2″	6"	5-1/2"	
3″	2-1/2″	8" & wider	3/4" less than nominal	
3-1/2″	3″			
4″	3-1/2″			
4-1/2″	4″]		
5" & Thicker	1/2" Off Nominal]		

Standard lengths are 6', 7', 8', 9', 10' and in multiples of 2' after 10'.

Note: MSR Scaffold Plank shall only be produced in a nominal 2" thickness and nominal widths of 8" and wider.

1.2 Moisture Content

Moisture Content limit is 19%, but if specified, or represented as kiln dried, the limit shall be 19% for such lumber designated "KD" or "KD19" and 15% for such lumber designated as "KD15".

2.0 VISUAL GRADING REQUIREMENTS

2.1 MSR

Mechanically stress rated lumber must be well manufactured and visually graded to limit certain characteristics even though the actual strength is not affected. All pieces shall be visually graded to assure that the characteristics affecting the strength are no more serious than the following limiting characteristics:

For MSR grades with an F_b of 1000 psi or greater:

- Checks: Seasoning checks not limited. Through checks at ends limited as splits.
- Manufacture: Standard F.
- Shakes: If through at ends limited as splits. Away from ends through heart shakes up to 2' long, well separated. If not through, single shakes may be 3' or up to 1/4 the length whichever is greater.
- Skips: Hit and miss, and in addition 5% of the pieces may be hit or miss or heavy skip not longer than 2'. (Reference SPIB Standard Grading Rule Book, para. 720(e), (f), and (g)).
- Slope of Grain: For machines not evaluating slope of grain, the assigned bending design value shall limit the slope of grain as follows:

0 - 14	50 psi	:	1 in 8
1500 -	2050 psi	:	1 in 10
2100	& higher	:	1 in 12

Machines that measure MOE by deflection indirectly evaluate slope of grain.

- Splits: Equal in length to 1-1/2 times the width of piece.
- Unsound Wood: Heart center streaks not over 1/3 the width or thickness.
- Wane: 1/3 the thickness and 1/3 the width full length, or equivalent on each face, provided that wane not exceed 2/3 the thickness or 1/2 the width for up to 1/4 the length. (reference SPIB Standard Grading Rule Book, para. 750)
- Warp: Light. (reference SPIB Standard Grading Rule Book, para. 752)
- Worm-Eaten Pitch: Regardless of the location, the worst-face measurement is limited to the allowable edge-knot size.

For machines not evaluating knots, knot holes, burls, distorted grain, and decay, when located partially or wholly at the edges of wide-faces, these defects shall be limited as determined by grade level qualification tests.

For MSR grades with an Fb less than 1000 psi:

- Checks: Seasoning checks not limited. Through checks at ends limited as splits.
- Manufacture: Standard F.
- Shakes: Surface shakes permitted. If through at edges or ends, limited as splits; elsewhere, through shakes 1/3 the length, scattered along the length.
- Skips: Hit or miss, with a maximum of 10% of the pieces containing heavy skips. (Reference SPIB Standard Grading Rule Book, para. 720(e) and (g))
- Slope of Grain: For machines not evaluating slope of grain, slope of grain is limited to 1 in 4. Machines that measure MOE by deflection indirectly evaluate slope of grain.
- Splits: Equal to 1/6 the length of the piece.
- Unsound Wood: Must not destroy the nailing edge. Heart center streaks are limited to 1/3 the cross section at any point along the length.
- Wane: 1/2 the thickness and 1/2 the width full length, or equivalent on each face, provided that wane not exceed 7/8 the thickness or 3/4 the width for up to 1/4 the length. (Reference SPIB Standard Grading Rule Book, para. 750)
- Warp: Medium. (Reference SPIB Standard Grading Rule Book, para. 752)
- Worm-Eaten Pitch: Regardless of the location, the worst-face measurement is limited to the allowable edge knot size.

For machines not evaluating knots, knot holes, burls, distorted grain, and decay, when located partially or wholly at the edges of wide faces, these defects shall be limited as determined by grade level qualification tests.

2.2 MSR Scaffold Plank

The grading of MSR Scaffold Plank shall be according to the following provisions, as well as the appropriate provisions in other paragraphs of the grading rules. MSR Scaffold Plank shall be dressed to standard dry size prior to machine stress rating and each piece shall be visually graded to assure that the characteristics affecting strength are no more serious than the limiting characteristics for each grade.

2400 F_b - 2.0E MSR Scaffold Plank

Characteristics permitted and limiting provisions shall be:

- Compression Wood: Prohibited if in readily identifiable and damaging form.
- Checks: Surface seasoning checks, not limited. Through checks at end limited as splits.
- Decay: In knots only.
- Knots: Knots, holes, burls or distorted grain shall not occupy more than 1/6 of the nominal cross section of the piece. Unsound knots limited to 1". Spike knots limited to the edge knot size, not extending across more than 1/3 of the width.
- Manufacture: Standard E.
- Pockets: Not limited.
- Shakes: On ends limited as splits if through. Away from ends heart shakes up to 2 feet long, none through. Ring shakes 1/4 width.
- Skips: hit and miss on any face in 10% of pieces.
- Slope of Grain: For machines not evaluating slope of grain, it shall be limited to 1:16.
- Splits: Equal in length to 1/2 the width of piece.
- Stain: Medium Stain.
- Wane: 1/4 the width, 1/4 the thickness, except 5% of the pieces may have wane ¼ width, 1/3 the thickness by 1/4 length.
- Warp: 1/2 medium, except very light twist.

2200F_b - 1.8E MSR Scaffold Plank

Characteristics permitted and limiting provisions shall be:

- Compression Wood: Prohibited if in readily identifiable and damaging form.
- Checks: Surface seasoning checks, not limited. Through checks at ends limited as splits.
- Decay: In knots only.
- Knots: Knots, holes, burls or distorted grain shall not occupy more than 1/5 of the nominal cross section of the piece. Unsound knots limited to 1" in 8" and 9" widths, 1-1/2" in 10" and 12" widths. Spike knots limited to the edge knot size, not extending across more than 1/3 of the width.
- Manufacture: Standard E.
- Pockets: Not limited.
- Shakes: On ends limited as splits if through. Away from ends heart checks up to 2 feet long,

none through. Ring shakes 1/3 width.

- Skips: Hit and miss on any face in occasional piece but heavy skip on narrow face permitted in 10% of pieces.
- Slope of Grain: For machines not evaluating slope of grain, it shall be limited to 1:14.
- Splits: Equal in length to the width of piece.
- Stain: Medium Stain.
- Wane: 1/4 the width, 1/4 the thickness except 5% of the pieces may have wane 1/3 the width, 1/2 the thickness for 1/4 the length.
- Warp: 1/2 medium, except very light twist.

2.3 E-Rated Laminations and E-Rated Tension Laminations

E-Rated Structural Laminations and E-Rated Tension Laminations must be well manufactured and visually graded to limit certain characteristics even though the actual strength is not affected. All pieces shall be visually graded to assure that the characteristics affecting the strength are no more serious than the following limiting characteristics:

- Checks: Seasoning checks not limited. Through checks at ends limited as splits.
- Knots: Knots may be sound, unsound or not firmly fixed. The cross-section area determines the knot size. Edge knots are limited to 1/2 the cross-section unless a more restrictive knot size is specified.
- Knotholes: Knotholes may be the same as knots permitted in the grade. Other holes are permitted if no more damaging in effect than the allowable knothole.
- Pitch or bark pockets: Medium scattered pitch or bark pockets are permitted. Pitch streaks shall not exceed 1/6 of the width.
- Shakes and Splits: Permitted if extending from wide faces into the thickness at an angle of 45 degrees or more from the wide face.
- Skips: Hit and miss, and in addition, 5% of the pieces may be hit or miss. (Reference SPIB Standard Grading Rule Book, para. 720(e), (f), and (g))
- Slope of Grain: For machines not evaluating slope of grain, the edge knot category shall limit the slope of grain as follows:

1/3 and larger : 1 in 10 1/4 and smaller : 1 in 12

Machines that measure MOE by deflection indirectly evaluate slope of grain.

- Torn Grain: Medium torn grain. Spots of heavy torn grain around knot areas or equivalent.
- Wane: Not to exceed 1/4" deep by 1/4" wide unless a more restrictive requirement is specified.
- Warp: Light, unless a more restrictive requirement is specified. (Reference SPIB Standard Grading Rule Book, para. 752)
- Worm-Eaten Pitch: Regardless of the location, the worst-face measurement is limited to the allowable edge-knot size.

2.4 MSR Tension Laminations

MSR Tension Lams must meet the visual grading requirements for E-Rated Lams. In addition, MSR

Tension Lams must meet the edge knot requirements for MSR lumber.

2.5 MEL

Machine Evaluated Lumber must be well manufactured and visually graded to limit certain characteristics even though the actual strength is not affected. All pieces shall be visually graded to assure that the characteristics affecting the strength and appearance are no more serious than the following limiting characteristics:

For MEL grades with an F_b of 1000 psi or greater:

- Checks: Seasoning checks not limited. Through checks at ends limited as splits.
- Manufacture: Standard F.
- Shakes: If through at ends limited as splits. Away from ends, through heart shakes up to 2' long, well separated. If not through, single shakes may be 3' or up to 1/4 the length which ever is greater.
- Skips: Hit and miss, and in addition 5% of the pieces may be hit or miss or heavy skip not longer than 2'. (Reference SPIB Standard Grading Rule Book, para. 720(e), (f), and (g))
- Slope of Grain: For machines not evaluating slope of grain, the assigned bending design value shall limit the slope of grain as follows:

1 in 8
1 in 10
1 in 12

Machines that measure MOE by deflection indirectly evaluate slope of grain.

- Splits: Equal in length to 1-1/2 times the width of piece.
- Unsound Wood: Heart center streaks not over 1/3 the width or thickness.
- Wane: 1/3 the thickness and 1/3 the width full length, or equivalent on each face, provided that wane not exceed 2/3 the thickness or 1/2 the width for up to 1/4 the length. (Reference SPIB Standard Grading Rule Book, para. 750)
- Warp: Light. (Reference SPIB Standard Grading Rule Book, para. 752)
- Worm-Eaten Pitch: Regardless of the location, the worst-face measurement is limited to the allowable edge knot size.

For machines not evaluating knots, knot holes, burls, distorted grain, and decay, when located partially or wholly at the edges of wide faces, these defects shall be limited as determined by grade level qualification tests.

For MEL grades with an F_b less than 1000 psi:

- Checks: Seasoning checks not limited. Through checks at ends limited as splits.
- Manufacture: Standard F.
- Shakes: Surface shakes permitted. If through at edges or ends, limited as splits; elsewhere, through shakes 1/3 the length, scattered along the length.
- Skips: Hit or miss, with a maximum of 10% of the pieces containing heavy skips. (Reference SPIB Standard Grading Rule Book, para. 720(e) and (g))

- Slope of Grain: For machines not evaluating slope of grain, slope of grain is limited to 1 in 4. Machines that measure MOE by deflection indirectly evaluate slope of grain.
- Splits: Equal to 1/6 the length of the piece.
- Unsound Wood: Must not destroy the nailing edge. Heart center streaks are limited to 1/3 the cross section at any point along the length.
- Wane: 1/2 the thickness and 1/2 the width full length, or equivalent on each face, provided that wane not exceed 7/8 the thickness or 3/4 the width for up to 1/4 the length. (Reference SPIB Standard Grading Rule Book, para. 750)
- Warp: Medium. (Reference SPIB Standard Grading Rule Book, para. 752)
- Worm-Eaten Pitch: Regardless of the location, the worst-face measurement is limited to the allowable edge knot size.

For machines not evaluating knots, knot holes, burls, distorted grain, and decay, when located partially or wholly at the edges of wide faces, these defects shall be limited as determined by grade level qualification tests.

3.0 GRADE-MARKING REQUIREMENTS

If the lumber produced in conformance with these procedures is grade-marked, the mark shall contain the items for each product as indicated in the following table:

ltem	MSR	MSR Scaffold Plank	E-Lam	E-Rated Tension Lam	MSR Tension Lam	Mel
Agency Identification	Х	Х	Х	Х	Х	Х
Seasoning Designation	Х	Х	Х	Х	Х	Х
Mill Identification	Х	Х	Х	Х	Х	Х
Species	Х	Х	Х	Х	Х	Х
"Machine Rated" or "MSR"	Х	Х			Х	
"E-LAM"			Х	Х	Х	
Grade Code						Х
F _b rating	Х	Х			Х	Х
E rating	Х	Х	Х	Х	Х	Х
F _t rating	Optional			Х	Х	Х
F _{c//} rating	Optional				Optional	Optional
Specific Gravity	Optional		Optional	Optional	Optional	Optional

Note: "Optional" items may be required if a mill chooses to participate in additional quality control procedures.

4.0 DESIGN VALUES

4.1 General

4.1.1 Mechanically graded lumber allowable stress assignments shall be limited to the increments specified in the following table:

Mechanical Property	Increment
Modulus of Elasticity (MOE)	100,000 psi
Fiber Stress in Bending (F_b)	50 psi
Fiber Stress in Tension (Ft)	25 psi
Compression Parallel to Grain (F _{c//})	25 psi
Compression Perpendicular-to-Grain ($F_{c\perp}$)	5 psi
Horizontal Shear (F _v)	5 psi

4.1.2 Determination of $F_{c\perp}$ and F_v by Controlling Specific Gravity When a grade is qualified by test and quality controlled for specific gravity, the allowable compression perpendicular-to-grain value may be determined using the following equation:

$$F_{c\perp} = (2252.4 * SG_{OD}) - 480$$

Compression perpendicular-to-grain values determined from the equation above are based on a 0.04-inch deformation limit and are standard for most structures. Values at 0.02-inch deformation may be obtained with the following equation:

$$F_{c\perp(.02)} = (0.71 * F_{c\perp(.04)}) + 14.1$$

When a grade is qualified by test and quality controlled for specific gravity, the allowable horizontal shear value may be determined using the following equation:

$$F_v = (266.0 * SG_{OD}) + 40.0$$

06/20

4.2 MSR Fb-E Combinations and Design Values

Recommended Design Values in Pounds Per Square Inch					
FiberStress in Bending "F _b " [1]	Grade	Modulus of Elasticity (million psi) "E"	Tension Parallel to Grain "F _t "	Compression Parallel to Grain "F _{c//} "	
750	750f-1.4E	1.4	425	925	
850	850f-1.4E	1.4	475	975	
975	975f-1.6E	1.6	550	1450	
1050	1050f-1.2E	1.2	450	1225	
1050	1050f-1.6E	1.6	575	1500	
1200	1200f-1.3E	1.3	600	1400	
1200	1200f-1.6E	1.6	650	1550	
1250	1250f-1.6E	1.6	725	1600	
1350	1350f-1.4E	1.4	750	1600	
1450	1450f-1.3E	1.3	825	1600	
1500	1500f-1.5E	1.5	900	1650	
1500	1500f-1.6E	1.6	900	1650	
1500	1500f-1.7E	1.7	900	1650	
1650	1650f-1.5E	1.5	1020	1700	
1650	1650f-1.7E	1.7	1020	1750	
1800	1800f-1.6E	1.6	1175	1750	
1850	1850f-1.7E	1.7	1175	1850	
1950	1950f-1.5E	1.5	1375	1800	
1950	1950f-1.7E	1.7	1375	1800	
2100	2100f-1.8E	1.8	1575	1875	
2250	2250f-1.9E	1.9	1750	1925	
2400	2400f-2.0E	2.0	1925	1975	
2550	2550f-1.8E	1.8	1400	2000	
2550	2550f-2.1E	2.1	2050	2025	
2700	2700f-2.2E	2.2	2150	2100	
2850	2850f-2.3F	2.3	2300	2150	
3000	3000f-2.4E	2.4	2400	2200	
Major Species Southern Pine:					
É Level	F_v $F_{c\perp}$	Specific Gravit	ty		
1.7 million psi and less:	175 psi 565	psi 0.55	,		
1.8 million psi and less:	See paragraph 600.5	(a) of the current Gradin	g Rules		
1.9 million psi and higher:	190 psi 805	psi 0.57	-		
[1] The tabulated Extreme Fiber in Bending value " F_b " is applicable to lumber loaded on edge. When loaded flatwise, multiply by the					

Design Values for Machine Stress Rated Lumber
2" Thick or Less
Recommended Design Values in Pounds Per Square Inch

 The tabulated Extreme Fiber in Bending value "Fb" is applicable to lumber loaded on edge. When loaded flatwise, multiply by the following factors to increase this value:

 Nominal Width (in.)
 4"
 6"
 8"
 10"
 12"
 14"

1.15

1.2

1.2

1.2

1.15

1.1

Factor

4.3 MSR Scaffold Plank Combinations and Design Values

Design Values for Machine Stress Rated Scaffold Plank Nominal Sizes: 2" Thick, 8" and Wider Recommended Design Values in Pounds Per Square Inch

Grade	Fiber Stress in Bending "Fb" [1]	Modulus of Elasticity (million psi) "E"
MSR Scaffold Plank 2400f-2.0E	2400	2.0
MSR Scaffold Plank 2200f-1.8E	2200	1.8

[1] The design values for MSR Scaffold Plank are recommended for flatwise use only and are for dry conditions of use (moisture content not to exceed19%). When qualified and controlled as specified in these procedures to meet the flexural requirements of Section 5.0, these values meet all requirements of ANSI A10.8 Safety Requirements for Scaffolds.

For wet conditions of use (where moisture content in service is greater than 19%) the above values shall be multiplied by the following adjustment factors:

F _b	E
0.85	0.90

4.4 MSR Tension Lamination Combinations and Design Values

MSR Tension Laminations have the same design values as the associated MSR grade. MSR Tension Lams also have an E-Lam grade associated with them. The E-Lam grade may be higher or lower than the grade E for the associated MSR grade.

4.5 MEL Combinations and Design Va	lues
------------------------------------	------

Design Values for Machine Evaluated Lumber 2" Thick or Less Recommended Design Values in Pounds Per Square Inch

	Fiber Stress in	Tension	Compression	Modulus of	
Grade Name	Rending	Parallel	Parallel	Elasticity	
	"F _L " [1]	to Grain	to Grain	(million psi)	
	, D [,]	"Ft"	"F _{c//} "	"E"	
M-5	900	500	1050	1.1	
M-6	1100	600	1300	1.0	
M-7	1200	650	1400	1.1	
M-8	1300	700	1500	1.3	
M-9	1400	800	1600	1.4	
M-10	1400	800	1600	1.2	
M-11	1550	850	1675	1.5	
M-12	1600	850	1675	1.6	
M-13	1600	950	1675	1.4	
M-14	1800	1000	1750	1.7	
M-15	1800	1100	1750	1.5	
M-16	1800	1300	1750	1.5	
M-17 [2]	1950	1300	2050	1.7	
M-18	2000	1200	1825	1.8	
M-19	2000	1300	1825	1.6	
M-20 [2]	2000	1600	2100	1.9	
M-21	2300	1400	1950	1.9	
M-22	2350	1500	1950	1.7	
M-23	2400	1900	1975	1.8	
M-24	2700	1800	2100	1.9	
M-25	2750	2000	2100	2.2	
M-26	2800	1800	2150	2.0	
M-27 [2]	3000	2000	2400	2.1	
M-28	2200	1600	1900	1.7	
M-29	1550	850	1650	1.7	
M-30	2050	1050	1850	1.7	
M-31	2850	1600	2150	1.9	
M-32	750	425	925	1.4	
M-33	850	475	975	1.4	
M-34	975	550	1450	1.6	
M-35	1050	575	1500	1.6	
M-36	1200	650	1550	1.6	
M-37	1250	725	1600	1.6	
M-38	1500	900	1650	1.6	
M-39	1650	1020	1750	1.7	
M-49	1850	1175	1850	1./	
Major Species Southern F	r r	Specific Crowity			
1.7 million osi and less: 175 osi 565 osi 0.55					
1.8 million psi and less:	1.8 million psi and less: See paragraph 603.5 (b) of the current Grading Rules				
1.9 million psi and highe	r: 190 psi 805 psi	0.57			
] The tabulated Extreme	Fiber in Bending value "F₅	" is applicable to lumber lo	aded on edge. When loade	d flatwise, multiply by the	

[1 following factors to increase this value:

Nominal Width (in.)		4"	6"	8"	10"	12"	14"
Factor		1.1	1.15	1.15	1.2	1.2	1.2
		1 11	1				

Grade requires " $F_{c//}$ " qualification and quality control. [2]

4.6 LRFD Conversion Factors

The design values shown in Sections 4.2 through 4.5 are for use with Allowable Stress Design (ASD). Load and Resistance Factor Design (LRFD) is an alternative engineering method. The design values for LRFD, called reference resistance values, can be computed by multiplying the ASD design values by the conversion factors listed in the following table:

Extreme Fiber in Bending "F₀"	Tension Parallel to Grain "F _t "	Horizontal Shear "F _v "	Compression Perpendicula r to Grain "F _c "	Compression Parallel to Grain "F _{c//} "	Modulus of Elasticity "E"
2.54	2.70	2.88	2.08	2.40	1.00

These factors have been established in accordance with the procedures set forth in ASTM Standard D 5457. The reference resistance values derived using these factors are in units of psi (million psi for "E"). To obtain units of ksi, divide the reference resistance values in psi by 1000.

5.0 MECHANICAL PROPERTY REQUIREMENTS

5.1 General

Mechanically graded lumber is required to meet certain mechanical requirements. The following table indicates the properties for which qualification and daily quality control are required for each type of mechanically graded lumber:

Property	MSR	MSR Scaffold Plank	E-LAM	E-Rated Tension Lam	MSR Tension Lam	MEL
Average Edgewise E	Х	Х			Х	Х
Minimum Edgewise E	Х	Х			Х	Х
Average Long Span E			Х	Х	Х	
Minimum Long Span E			Х	Х	Х	
Bending Strength (MOR)	Х	Х			Х	Х
Tension Strength (UTS)	Optional	Optional	Optional	Х	Х	Х
Compression Strength (UCS)	Optional	Optional	Optional	Optional	Optional	Optional
Specific Gravity ^[1]	Optional	Optional	Optional	Optional	Optional	Optional

[1] If a major species Southern Pine grade of 1.9E or greater is run in combination with one or more, equal or higher E grade(s), then specific gravity must be qualified and quality controlled for the lower grade(s), as determined by the agency.

Note: "Optional" items may be required if a mill chooses to participate in additional quality control procedures.

5.2 Average Edgewise MOE

The grade $E(E_g)$ is the assigned average Modulus of Elasticity for each machine grade classification. The edge Modulus of Elasticity is determined under the following conditions:

Selection of Loaded Edge	random
Loading Location	third points
Span to Depth Ratio	21:1 where possible
Lengthwise Orientation	the piece shall be centered in the test span
Rate of Loading	maximum rate of stress of 16,000 psi per minute

The average edge Modulus of Elasticity (\overline{E}) of MSR lumber shall equal or exceed the grade E (Eg).

 $\overline{E} \ge E_g$

5.3 Minimum E

The Minimum E (E_{min}) is the estimate of the lower fifth percentile of Modulus of Elasticity. For products with an assumed coefficient of variation for modulus of elasticity of 11%, including MSR, MSR Scaffold Plank, E-Lams, E-Rated Tension Lams, and MSR Tension Lams, the Minimum E value for each grade is assigned a value of 0.82 times the grade E (E_g).

 $E_{min}~\geq~0.82E_g$

For products with an assumed coefficient of variation for modulus of elasticity of 15%, including MEL, the Minimum E value for each grade is assigned a value of 0.75 times the grade E (E_g) unless tighter E variability control is applied.

$$E_{min} \geq 0.75E_g$$

5.4 Long Span E

The Long Span E (LS E) is the assigned average flat-wise long span modulus of elasticity for each machine grade classification. The LS E shall be determined under the following conditions:

Selection of Loaded Face	random
Loading Location	center point
Span to Depth Ratio	100:1 where possible, minimum of 80:1
Lengthwise Orientation	the piece shall be centered in the test span
Preload	5 pounds

Size	Load (lbs.)
2x4	10
2x6	10
2x8	15
2x10	15
2x12	20

The increment load should be sufficient to produce approximately 0.2 (in) deflection in a piece with an LS E of 2.0 million psi. The following loads are recommended:

The average Long Span E (LS E) of E-LAM lumber shall equal or exceed the grade E (Eg).

 $\overline{E} \ge E_g$

Flatwise Modulus of Elasticity for MSR Scaffold Plank is determined under the same conditions as above.

5.5 Bending Strength (MOR)

The Modulus of Rupture (MOR) is the ultimate stress (expressed in pounds per square inch) of the extreme fibers during bending. It is determined from a formula and depends on maximum bending load, location of load in the span, depth of the member and length of the span. The edgewise Modulus of Rupture shall be determined as follows:

Selection of Loaded Edge	Random
Loading Location	third points
Span to Depth Ratio	21:1 where possible
Lengthwise Orientation	the maximum edge defect located between or as close to the load points as possible
Rate of Loading	maximum rate of stress of 16,000 psi per minute (reach proofload in not less than 15 seconds)

The lower fifth percentile estimate of the Modulus of Rupture for a grade of mechanically graded lumber (MOR 5th) when subjected to a short-term load shall equal or exceed 2.1 times the assigned fiber stress in bending for the grade (F_b):

$$P = \frac{F_b * b * d^2}{L} * 2.1$$

where:

Р	=	Proofload (lb)
Fb	=	Design Value (psi)
b	=	base (in) perpendicular to load
d	=	depth (in) parallel to load
L	=	Test Span Length (in)

	0	
Size	Lumber Length	Test Span Length
2x4	10' - 20'	73.5"
2x6	10' - 20'	115.5"
2,0	10' - 12'	115.5"
2x0	14' - 20'	152.25"
2.10	10' - 12'	115.5"
2x10,	14'	152.25"
2x12	16' - 20'	185.0"

Appropriate Test Span Lengths for Various Widths and Lengths of Lumber

For MSR Scaffold Plank -The lower fifth percentile estimate of the Modulus of Rupture shall equal or exceed 2.6 times the assigned flatwise fiber stress in bending for the grade (F_b) adjusted for edge orientation, if tested on edge, according to the following table:

$$P = \frac{F_b * b * d^2}{L} * 2.6$$

For Edge F_b , multiply flat F_b by:

Size:	2x8	2x10	2x12
Factor:	0.870	0.833	0.833

5.6 Tension Strength (UTS)

The Ultimate Tensile Stress is determined from a formula and depends on the ultimate tensile load and the cross sectional area of the member. The Ultimate Tensile Stress shall be determined as follows:

Gauge Length (Interior Distance between Grips):	8' or longer when possible. Not less than 4'.
Orientation:	The maximum strength-reducing defect shall be positioned between the grips and, where possible, a minimum distance away from the grip equal to two times the nominal test specimen width. In no case shall it be located partially or wholly within the grip.
Rate of Loading:	Not to exceed 4000 psi per minute.

The lower fifth percentile estimate of the Ultimate Tensile Stress for a grade of mechanically graded lumber (UTS 5th) when subjected to a short-term load, shall equal or exceed 2.1 times the assigned fiber stress in tension for the grade (F_t):

$$P = F_t * b * d * 2.1$$

where: P = Proofload (lb) $F_t = Tension Design Value (psi)$

b	=	thickness (in)
d	=	width (in)

5.7 Compression Strength (UCS)

The Ultimate Compressive Stress (UCS) is determined from a formula and depends on the ultimate compressive load and the cross sectional area of the member. The UCS shall be determined as follows:

Test Specimen	Cut from full-length members. Represents maximum strength- reducing characteristic.
Test Specimen Length	At least 2.5 times the greater cross sectional dimension. Maximum strength reducing characteristic shall be centered within the specimen length. Bearing surfaces shall be plane, parallel to each other and perpendicular to the long axis of the specimen.
Bearing Blocks	Designed to ensure load is uniformly applied over the full contact surfaces to prevent eccentric loading. At least one spherical bearing block shall be used.
Lateral Supports	May be either continuous or intermittent. Shall allow for specimen movement in the direction of the load application and provide minimal friction restraint.
Loading Rate	Load shall be applied at a rate such that the target load is achieved in approximately 1 minute.

The lower fifth percentile estimate of the Ultimate Compressive Stress for a grade of mechanically graded lumber (UCS 5th) when subjected to a short-term load, shall equal or exceed 1.9 times the assigned fiber stress in compression parallel to the grain for the grade ($F_{c/}$):

$$P = F_{c/l} * b * d * 1.9$$

where:

P=Proofload (lb) $F_{c//}$ =Compression Parallel Design Value (psi)b=thickness (in)d=width (in)

5.8 Specific Gravity

When the equations in Section 4.1.2 are used to assign $F_{c\perp}$, F_v , or an alternate specific gravity value, the mean specific gravity of the population of a grade of mechanically graded lumber shall be maintained at the level qualified.

The specific gravity shall be measured following the procedures of ASTM D2395, Method A, except for the tolerances listed below. The specific gravity for each specimen shall be determined at the moisture content at the time of test. The specific gravity value shall be converted to an oven dry weight and volume basis using ASTM D2395 Appendix X1. The table in Appendix C may be used

for many cases.

Specific Gravity shall be determined to the following specifications:

Specimen dimensions shall be measured to the nearest 0.01 inch in thickness and width, and to the nearest 1/8 inch in length. Specimen weight shall be measured as either the full specimen weight or 1/2 weight using a calibrated weighing device measuring to at least the nearest 0.1 (lb). Moisture content shall be determined using a calibrated surface or pin type moisture meter adjusted for the species

$$SG_{test} = \frac{K^*W}{(1 + \frac{MC_{test}}{100}) w^*t^*\ell}$$

where:

SG _{test}	= Specific Gravity at OD weight and volume at time of test
K	= a constant, 27.68 if W is in (lb), volume is in (in^3)
W	= Weight of specimen, (lb)
<i>MC</i> _{test}	 Moisture Content at time of test
W	= width of piece, (in)
t	 thickness of piece, (in)
ł	= length of piece, (in)

When specific gravity is to be qualified, the specific gravity shall be determined for each specimen in the bending or tension sample.

When required, specific gravity shall be determined for all bending or tension daily quality control specimens in accordance with the above paragraphs.

6.0 **REINSPECTION REQUIREMENTS**

Complaints on mechanically graded lumber involving visual grade, size, working, tally or moisture content shall be governed by Inspection and Shipping provisions of the SPIB Standard Grading Rules. Complaints on the Modulus of Elasticity of mechanically graded lumber shall be in accordance with the basis of testing desired, provided the basis is specified in the contract of purchase and sale, or is mutually agreeable to buyer and seller. In the absence of a special agreement, the purchase, sale or shipment of mechanically graded lumber under these SPIB Mechanically Graded Lumber Procedures shall be construed as involving agreement to abide by the acceptance sampling procedures described below. Samples from the mechanically graded lumber under complaint shall be randomly selected using a procedure mutually agreed upon by the buyer and seller. The sample sizes and acceptance requirements are given in Table 1. The sample pieces shall be submitted to an independent, qualified laboratory authorized by SPIB and tested for edgewise MOE in accordance with Section 5.0. (Note: E-Rated Laminations and E-Rated Tension Laminations shall be tested for Long Span E instead of edgewise E.)

If the pieces tested conform to the requirements of Table 1, the average and minimum Modulus of Elasticity of the item qualifies as satisfactory in relation to compliance with purchase specifications

and for effecting settlement of the invoice between buyer and seller. If the pieces tested do not conform to the requirements of Table 1, the entire item shall become the property of the seller.

The expense of the inspection and testing costs shall be borne by the seller if the item tested does not conform to the specified requirements of these procedures, and by the buyer if the item tested conforms to the specified requirements, but the applicant for the inspection shall be responsible to the Bureau for the cost thereof.

TABLE T. ACCEPTATICE CITCETIA TO MECHANICALLY GLAUEU LUTIDEL RE-INSPECTIONS

Sample Size	Sample average must exceed this value	Maximum number of pieces which may be less than "Minimum E"
100	E _g - 0.318* <i>s</i>	8

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

where:	E _g = the grade E s = sample standard deviation, calculated as:		
	п	=	sample size = 100
	Xi	=	each observation
	\overline{x}	=	average value

Minimum E	= 0.82 * E_g for products with an assumed COV of 11%
	= 0.75 * E_g for products with an assumed COV of 15%

Note: Both requirements in Table 1 must be met for acceptance.

PART B - PROCEDURES FOR QUALIFICATION AND QUALITY CONTROL

7.0 QUALIFICATION PROCEDURES

7.1 Scope

This document defines minimum procedures by which manufacturers may become qualified to produce and grade-mark mechanically graded lumber as described by the grading rules. The agency is responsible for qualification of each manufacturer.

7.2 Equipment and Personnel Requirements

- 7.2.1 Each facility shall have a written facility standard outlining quality control procedures. This standard must be approved by the agency prior to production (grademarking) and must be followed to retain qualification. Any changes to the facility standard must be approved by the agency.
- 7.2.2 The agency supervisor shall visit the facility to determine:
 - 1) That the operation is capable of being operated within the requirements of the facility standard; and
 - 2) Operating personnel shall be qualified by the quality control agency to conduct the mechanically graded lumber quality control program.
- 7.2.3 Each facility shall possess the static test equipment capable of testing the sizes and grades to be qualified. The accuracy of the facility's test equipment shall either be certified by the manufacturer or verified against the agency's calibrated test equipment. The tension gauge length and bending test span and load points shall be set to an accuracy of $\pm 1/16$ " of the required span.
- 7.2.4 The static bending test equipment shall be capable of measuring displacement to 0.001". The deflection of the wood is measured relative to the reaction supports.
- 7.2.5 Where unsupported overhangs create a flexural stress in the member, the calculation of MOR shall consider the effect due to the weight of the overhangs if to do otherwise results in non-conservative results.
- 7.3 Qualification Sample Selection
 - 7.3.1 Before selecting the samples, the production machine shall have been properly calibrated and set for the size and machine grade or grades to be qualified. Grades shall be qualified in the grade combinations in which they are produced. Each size and grade category for which grade-marks are desired must be qualified.

For the mechanically graded lumber product being qualified, determine which properties are required to be tested (Reference Section 5.1). Based on the properties to be tested, determine the number of pieces to be selected. No piece may be tested for more than one

strength property. Pieces may be tested for one or more E measurements as well as a single strength property. The following table indicates the minimum sample sizes required for the various mechanically graded products:

Property	MSR	MSR Scaffold Plank	E-LAM	E-Rated Tension Lam	MSR Tension Lam	MEL
Bending (AVG E, MIN E, AVG LS E, MIN LS E, MOR)	53	53	53		53	53
Tension (UTS)				53*	53	53

* AVG LS E and MIN LS E are required, but the same 53 pieces may be used as used for UTS. Additional samples are required if optional properties are to be qualified (e.g. UTS or UCS). Specific gravity may be determined using the same pieces used to determine E.

- 7.3.3 If knots are not evaluated by the production machine, an edge knot size must be established that has the potential of being qualified. A knot size guide is 1/6 the width of the piece for grades 2100f and higher and 1/4 the width for grades less than 2100f.
- 7.3.4 Following machine rating, the agency supervisor shall randomly select pieces representative of each grade to be qualified. Including 10-30 additional pieces per grade during initial sample selection is recommended so that extras are available for replacement of pieces with over-sized edge knots, excess moisture, etc. Each piece shall meet the visual grading requirements as per Section 2.0. A higher-level visual grade requirement is permissible. Such requirements must be recorded on the qualification form and become a permanent part of the grade qualification.
- 7.3.5 Pieces with edge knots whose size are questionable must be included in the sample and the edge knot size determined later by measurement. If two or more grades are being qualified in combination, any downfall from a higher grade must be included in a lower grade.
- 7.4 Qualification Sample Testing
 - 7.4.1 Mark the location of the edge characteristic visually judged to be the most strength reducing defect. Measure and record the maximum edge knot in each piece. Discard any piece exceeding the edge knot size as established in 7.3.3 above. Testing of each piece is to be done in sequence, layer by layer from the package of qualification sample lumber. Testing continues until the minimum sample size has been tested.
 - 7.4.2 Moisture content shall be determined and recorded for each piece at time of test. Discard any piece exceeding the moisture content requirements.
 - 7.4.3 If required, the edgewise Modulus of Elasticity shall be determined from a load/deflection relationship obtained below the proportional limit of the test piece in accordance with Section 5.2. The grade-mark or color mark on the sample shall be consistently placed to

either the tester's right or left and the machine spray facing the tester to provide random placement of edge defects with respect to loading in tension or compression.

- 7.4.4 If required, the Long Span E (LS E) shall be determined in accordance with Section 5.4.
- 7.4.5 If required, bending strength shall be determined in accordance with Section 5.5, by loading each piece to a level to be determined according to Appendix B for the machine grade being produced. If the test piece fails at any load value below the specified proofload, the MOR is recorded and also whether the failure was obviously initiated by a visual defect in the test piece. A partial failure in the lumber may be disregarded if the piece sustains the proofload without further damage.
- 7.4.6 If required, tension strength shall be determined in accordance with Section 5.6, by loading each piece to a level determined according to Appendix B for the machine grade being produced. If the test piece fails at any load value below the specified proofload, the UTS is recorded and also whether the failure was obviously initiated by a visual defect in the test piece. A partial failure in the lumber may be disregarded if the piece sustains the proofload without further damage.
- 7.4.7 If required, compression strength shall be determined in accordance with Section 5.7, by loading each piece to a level determined according to the equation in Section 5.7 for the machine grade being produced. If the test piece fails at any load value below the specified proofload, the UCS is recorded and also whether the failure was obviously initiated by a visual defect in the test piece. A partial failure in the lumber may be disregarded if the piece sustains the proofload without further damage.
- 7.4.8 If required, the specific gravity shall be determined in accordance with Section 5.8.
- 7.4.9 When the temperature of the wood is below 32°F, corrections to the strength properties and E may be necessary.
- 7.5 Analysis of Qualification Test Results
 - 7.5.1 The results of the E and strength tests shall determine whether grade-marks may be issued for the item being qualified. The grade and size combination is considered qualified and grade-marks may be issued if the following requirements are met:

(a)	(b)	(C)
Mean E of the E Qualification Sample equals or exceeds:	Pieces with E less than "Minimum E" for the grade	Pieces with strength less than the required proofload (per property)
E _g - 0.04x10 ⁶ psi	no more than 1	no more than 1

Note: Additional samples may be tested to qualify for minimum E or a strength property.

Sample Size	Failures Permitted
78	2
102	3
125	4

The following table presents required sample sizes and permitted failures:

- 7.5.2 If more strength failures are encountered than permitted in 7.5.1(c), the grade might still be qualified by utilizing the following procedures.
 - 1) Determine how many failed pieces and passing pieces with a given knot size would have to be eliminated to qualify. Reduce the edge knot size to the new limit. Eliminate the pieces with edge knot sizes exceeding this new limit. Test an equal number of additional pieces in the same sequence as in 7.4.1.
 - 2) If no additional strength failures are encountered, the grade may be qualified. Provided:
 - The number of strength failures in the new sample is rechecked and does not exceed the strength failure allowance.
 - The average E for the new sample is calculated and meets the E requirements.
 - The number of pieces in the new sample with an E less than the Minimum E for the grade is rechecked and meets the requirements.
- 7.5.3 If the test results do not meet the requirements of 7.5.1 (a), (b), and (c), or 7.5.2, the manufacturer may elect to qualify a lower grade for which these requirements are met, provided the visual requirements for the lower grade are the same. Alternatively, adjustments of the machine settings may be made, new samples selected and tested until requirements of 7.5.1 (a), (b), and (c) or 7.5.2 are satisfied.

8.0 FACILITY QUALITY CONTROL PROCEDURES

8.1 Scope

This section defines minimum quality control procedures to be followed by the facility to continuously maintain both the E and strength requirements of the grades being produced. Continuing use of grade-marks for mechanically graded lumber is made contingent upon the manufacturer following certain required minimum in-facility quality control procedures as set forth in this Section.

8.2 Machine and Test Equipment Calibration

8.2.1 Machine Calibration - The production machine shall be calibrated prior to the beginning of each production period and at approximately every four hours of machine operation, unless otherwise stated in the machine manufacturer's published operation manual. The manufacturer's machine operation manual is to be referenced within the Facility Standard and shall be available to the agency for review. Records of all calibration checks shall be

maintained.

- 8.2.2 Test Equipment Calibration
 - 1) Bending Bending proof loader calibration shall be verified daily using an aluminum bar with the test bench set for 2x4 or 2x6 measurements. Load cells shall be verified once per week using a load gauge that has been calibrated per paragraph 8.2.3. Readings shall be within 1% of the target value for the proving ring and aluminum bar, unless otherwise stated in the manufacturer's published operator's manual. If the precision cannot be met with both the proving ring and aluminum bar, no lumber shall be released for shipment until samples are tested with a proof loader meeting the required precision and the test results meet the quality control requirements.
 - 2) Tension Daily calibration of tension proofloaders refers to the calibration of electronic measuring devices using "shunt calibration". The tension proof loader must be calibrated once per year using a tension calibration link.
 - 3) Compression Daily calibration of compression proofloaders refers to the calibration of electronic measuring devices by the use of the "shunt calibration". Load cells must be calibrated once per week using a proof ring.
- 8.2.3 Certification of Load Gauge A testing laboratory with standards traceable to the National Institute of Science and Technology shall calibrate the mill load gauges annually with no more than 18 months between calibrations. The laboratories testing equipment shall be calibrated in accordance with the current ASTM E-74 standard. ASTM E-74 considers bias and precision.

8.3 Quality Control Sampling

Immediately following qualification, intensive quality control sampling shall be performed on the grade or grade combinations qualified. From each of the first three (3) eight-hour (8hr.) shifts following the qualification four (4), five-piece samples shall be selected as specified below:

Count five (5) pieces of the grade being tested.

Select the next five (5) pieces of the grade tested as graded under production line conditions.

Repeat this process four (4) times at approximately equal intervals during the shift period.

For all subsequent quality control sampling for a given grade, a minimum of one (1) five (5)-piece sample shall be selected for each four (4) hour production period or for each significant portion of a production period.

8.4 Quality Control Sample Testing

Quality control tests shall be performed for each property, as required for the product being

produced (Reference Section 5.1). Tests shall be performed using the procedures described in Sections 5.2 through 5.8. Proofloads for bending and tension strength are presented in Appendix B. Results from these tests shall be entered on the Control Forms.

8.5 Analysis of Quality Control Test Results

Quality control, including sampling and testing shall utilize the Cumulative Sum (CUSUM) procedure or other approved system, and test results shall be recorded on Control Forms. CUSUM control constants are given in Appendix C. Separate CUSUM records shall be required for each grade produced. In some instances, a given grade may be run individually or in combination with other grades. In either case, one CUSUM record shall be maintained if a grade is run individually and another CUSUM record shall be maintained when a grade is run in combination with another grade.

8.5.1 In-Control

If tests show the process for the properties required for the mechanically graded product being produced to be in-control, all lumber represented by the sample is satisfactory for shipment.

8.5.2 Out-of-Control

Upon determining the production is out-of-control, all lumber represented by the sample shall be held pending results of confirmation tests as set forth below and in Appendix D:

The visual grade and moisture content shall be checked. The production machine shall be checked for basic calibration and accuracy of machine boundary settings. The static test equipment shall be checked for accurate calibration. Following lumber, machine and test equipment checks, the operator can 1) make no machine grade boundary adjustment, 2) make a single 3% or smaller machine grade boundary adjustment, or 3) make a machine grade boundary adjustment greater than 3% (Appendix D).

8.5.3 Summary of Steps in Out-of-Control

The operator may take a maximum of three (3) sets of six (6) five (5)-piece* samples in an attempt to bring the grade back into control. The operator may take one (1) set of six (6) five (5)-piece* samples in Step 1 and another two (2) sets of six (6) five (5)-piece* samples in Step 2. If the grade remains out-of-control after Step 1 and/or Step 2 is executed, then Step 3 is executed and the grade must be re-qualified.

* When UTS and/or UCS testing are required as part of the daily quality control testing, these properties must also be monitored in the Out-of-Control situation. Appropriate additional sampling and testing must be performed.

STEP 1. No Machine Grade Boundary Adjustment

If no initial machine grade boundary adjustment is made, the operator shall select 30* pieces from production by choosing approximately every third (3rd) piece, sequentially numbered

in six (6) samples of five (5) pieces*. Tests shall be made in accordance with Section 8.4.

When control forms indicate in-control, after one (1) or more of the six (6) samples have been tested and evaluated, the production volume held pending completion of tests may be released for shipment and grade-marked production may continue.

If control forms indicate the process is still out-of- control, proceed to either Step 2 or Step 3.

STEP 2. Machine Grade Boundary Adjustment of 3% or Less.

If a single 3% or smaller machine grade boundary adjustment is made, the operator shall select 30* pieces representative of production following the modification by choosing approximately every third (3rd) piece, sequentially numbered in six (6) samples of five (5) pieces*. Tests shall be made in accordance with Section 8.4.

If after the machine grade boundary adjustment the control forms indicate in-control, after one or more of the six (6), five (5)-piece* samples have been evaluated the production volume held pending completion of tests may be released for shipment and grade-marked production may continue.

If the process remains out-of-control, the operator can select 30* additional pieces at the modified machine grade boundary settings or proceed to Step 3. These additional samples must be collected and tested in the manner described above. If the process remains out-of-control after these additional samples are tested, proceed to Step 3.

STEP 3. Machine Grade Boundary Adjustment of More than 3%.

If a machine grade boundary adjustment of more than 3% is made, all grade-marks on lumber held pending completion of tests shall be obliterated. The Quality Control agency shall be notified immediately.

This size-grade level must be requalified according to Section 7.3 through 7.5 before production can resume. After requalification, intensive sampling shall be performed in accordance with Section 8.4.

8.6 Machine Grade Boundary Adjustments

Qualified mill personnel may adjust machine grade boundary settings. The amount of the change and required testing vary, depending on the direction of the change, the current CUSUM value and the current machine settings.

8.6.1 Reducing Grade Boundary Settings

 Current CUSUM = 0, Current settings = qualified settings. Reductions in grade boundary settings from the qualified settings are limited to 3% increments. After reducing the settings up to 3%, Intensive Sampling, at the rate of 2 samples every 4 hours for 3 shifts (12 samples) must be performed. Upon acceptance of the reduced settings, the new settings become the qualified settings. 2) Current CUSUM = 0, Current settings above qualified settings.

If current settings are above the qualified settings, they may be reduced to the qualified settings in any increment up to 6%, and no additional testing (Intensive Sampling) is required. Additional reductions may be taken after testing at least 12 samples at the first reduced settings. These 12 samples may be taken at the ordinary rate (1 sample every 4 hours for 6 shifts), or at an increased rate (Intensive Sampling).

If a single increment reduction of greater than 6%, but less than 10%, is desired, Intensive Sampling must be performed.

No reductions in grade boundary settings greater than 10% are permitted in a single increment.

- 3) No reductions in Grade Boundary settings are permitted when the CUSUM is positive (greater than 0).
- 8.6.2 Increasing the Grade Boundary Settings
 - Current CUSUM is less than Y. If the current CUSUM is less than the Y value for grade being produced, and the process is not otherwise Out-of-Control, the grade boundary settings may be increased in any increment.
 - 2) Current CUSUM is greater than Y. If the current CUSUM is greater than Y, it is automatically set equal to the Z value and an Out-of-Control situation has occurred. Increases in grade boundary settings are permitted, but limited to 3% increments. Out-of-Control procedures must be followed.
- 8.6.3 Machine Controlled Grade Boundary Settings
 - 1) Machines that are capable of monitoring and controlling the settings automatically may be set to adjust the settings to any increment above the qualified setting and then automatically adjust the settings towards the qualified setting, but not below.
 - 2) Paragraph 8.6.2 2) applies.
- 8.7 Quality Control Record Keeping

Facility quality control records shall include:

- Machine and test equipment calibration checks,
- Machine settings and any changes thereto,
- Quality control tests, and
- Production stoppages occasioned by the quality control provisions with an explanation of the corrective action taken.

Records shall be retained for at least one year and be available, upon request, to the agency during

work hours.

8.8 Time Frame for Grade Qualifications

Grade or grade combination qualification tests shall become void when such grades or grade combinations have not been produced for a period of eighteen (18) months.

9.0 AGENCY QUALITY CONTROL

9.1 Qualification of Facilities

The agency is responsible for performing the analysis of grade/size qualification test results prior to issuance of grade-marks. The agency shall maintain a current list of qualified facilities including grades and sizes. The agency shall approve and maintain a record of tests performed to change qualified grade boundary settings in order to increase grade recovery or change the combination of grades being produced.

9.2 Verification of Test Equipment

At least annually the accuracy of facility test equipment shall be evaluated to verify the integrity of the deflection and load measuring apparatus. This requirement is separate from the annual calibration of the mill load gauge.

9.3 Mill Personnel

Upon initial plant qualification, the agency shall establish that mill personnel are informed on proper operating procedures required for the production of mechanically graded lumber as outlined in the agency's procedures for qualification and quality control.

9.4 Periodic Inspections

Following qualification mechanically graded lumber production of the operating facility shall be inspected by an agency supervisor at approximately monthly intervals to evaluate conformance to visual grade requirements and general manufacturing quality. The agency supervisor shall submit a report of the inspection to the inspected facility and to the agency. This report shall include a record of any production stoppages during the preceding month occasioned by an out-of-control situation in addition to indicating facility production conformance to agency visual grade rules. The agency shall keep on record for a minimum of three years the monthly reports furnished by the agency supervisor.

9.5 Quarterly Inspections

Following qualification, mechanically graded lumber production of the operating facility shall be inspected by an agency Quality Supervisor or technician at least quarterly to evaluate conformance to established requirements under the quality control procedure. The Quality Supervisor shall submit

a report of the inspection to the inspected facility and to the agency. If not previously covered in an inspection report since the last quarterly report, this report shall include:

- An analysis of the physical tests performed on representative mechanically graded lumber production.
- A record of the mill's weekly static tester calibration checks; and
- A record of the mill's maintenance of accurate and complete daily quality control tests.

This report shall also include a record of any production stoppages since the previous inspection occasioned by an out-of-control situation. The agency shall keep on record for a minimum of two (2) years the quarterly mill reports.

9.6 Periodic Tension Testing

For those facilities not monitoring tension strength on an on-going basis, the agency shall periodically assess the mechanically graded products for tension strength.

APPENDIX A - SHEAR CORRECTION FACTORS FOR E

In cases where the size and length of lumber results in a test span to depth ratio (I/d) less than 21, the following factors may be applied to E qualification and quality control test results.

Assumptions:

1/3 Point Loading* Deflection measured at mid-point E/G ratio of 16

_

l/d	Factor applied to Measured E
20	1.003
19	1.007
18	1.012
17	1.017
16	1.024
15	1.032
14	1.041
13	1.053
12	1.068
11	1.087
10	1.112

This table was derived from ASTM D 2915-17, Table X4.1, K factors for Adjusting Apparent Modulus of Elasticity of Simply Supported Beams.

06/20

APPENDIX B - PROOFLOADS

The equations used to determine the proofloads are as follows:

Bending	Tension
$P = \frac{F_b * b * d^2 * 2.1}{L}$	$P = F_t * b * d * 2.1$
P = Bending Proofload (lb) $F_b = Bending Design Value (psi)$ b = base (in) (perpendicular to load) d = depth (in) (parallel to load) L = Test Span Length (in)	 P = Tension Proofload (lb) F_t = Tension Design Value (psi) b = thickness (in) d = width (in)

		Fb		750	850	900	975	1050	1100	1200	1250	1300	1350	1400	1450	1500	1550	1600	1650	1800	1950	2000	2100	2200	2250	2300	2350	2400	2550	2700	2750	2800	2850	3000
		16'/20'	185	1616	1832	1939	2101	2263	2370	2586	2694	2801	2909	3017	3125	3232	3340	3448	3556	3879	4202	4310	4525	4741	4849	4956	5064	5172	5495	5818	5926	6034	6142	6465
	12	14	152.25	1964	2226	2357	2553	2749	2880	3142	3273	3404	3535	3666	3797	3928	4059	4190	4321	4713	5106	5237	5499	5761	5892	6023	6154	6284	6677	7070	7201	7332	7463	7856
	2x,	10'/12'	115.5	2589	2934	3107	3365	3624	3797	4142	4315	4487	4660	4832	5005	5178	5350	5523	5695	6213	6731	6903	7249	7594	7766	7939	8112	8284	8802	9320	9492	9665	9837	
		õ	90.42	3307	3748	3968	4299	4630	4850	5291	5511	5732	5952	6173	6393	6614	6834	7055	7275	7936	8598	8818	9259	9700	9921									
		16'/20'	185	1093	1238	1311	1420	1530	1603	1748	1821	1894	1967	2040	2112	2185	2258	2331	2404	2622	2841	2914	3059	3205	3278	3351	3424	3497	3715	3934	4006	4079	4152	4371
	0	14'	152.25	1328	1505	1593	1726	1859	1947	2124	2213	2301	2390	2478	2567	2655	2744	2832	2921	3186	3452	3541	3718	3895	3983	4072	4160	4249	4514	4780	4868	4957	5045	5311
pounds	2x1	10'/12'	115.5	1750	1983	2100	2275	2450	2567	2800	2917	3034	3150	3267	3384	3500	3617	3734	3850	4200	4550	4667	4900	5134	5250	5367	5484	5600	5950	6301	6417	6534	6651	7001
ed Load,		õ	90.42	2236	2534	2683	2906	3130	3279	3577	3726	3875	4024	4173	4322	4471	4620	4769	4918	5365	5813	5962	6260	6558	6707	6856	7005	7154	7601	8048	8197	8346	8495	8942
m Kequir		14'/20'	152.25	816	924	979	1060	1142	1196	1305	1359	1414	1468	1523	1577	1631	1686	1740	1794	1958	2121	2175	2284	2393	2447	2501	2556	2610	2773	2936	2991	3045	3099	3263
Minimu	8	10'/12'	115.5	1075	1218	1290	1398	1505	1577	1720	1792	1864	1935	2007	2079	2150	2222	2294	2365	2580	2795	2867	3010	3154	3225	3297	3369	3440	3655	3871	3942	4014	4086	4301
	2x	õ	90.42	1373	1556	1648	1785	1923	2014	2197	2289	2380	2472	2564	2655	2747	2838	2930	3021	3296	3571	3662	3845	4029	4120	4212	4303	4395	4669	4944	5036	5127	5219	5493
		õ	73.5	1690	1915	2027	2196	2365	2478	2703	2816	2928	3041	3154	3266	3379	3492	3604	3717	4055	4393	4505	4731	4956	5069	5181	5294	5406	5744	6082	6195	6308	6420	6758
		10'-20'	115.5	619	701	743	804	866	908	066	1031	1073	1114	1155	1196	1238	1279	1320	1361	1485	1609	1650	1733	1815	1856	1898	1939	1980	2104	2228	2269	2310	2351	2475
	2×6	õ	90.42	290	896	948	1027	1107	1159	1265	1317	1370	1423	1475	1528	1581	1633	1686	1739	1897	2055	2108	2213	2318	2371	2424	2477	2529	2687	2845	2898	2951	3003	3161
		õ	73.5	972	1102	1167	1264	1361	1426	1556	1621	1685	1750	1815	1880	1945	2009	2074	2139	2334	2528	2593	2723	2852	2917	2982	3047	3111	3306	3500	3565	3630	3695	3889
	2x4		73.5	394	446	473	512	551	578	630	656	683	709	735	761	788	814	840	866	945	1024	1050	1103	1155	1181	1208	1234	1260	1339	1418	1444	1470	1496	1575
	Fb	L	<u>\$</u>	750	850	900	975	1050	1100	1200	1250	1300	1350	1400	1450	1500	1550	1600	1650	1800	1950	2000	2100	2200	2250	2300	2350	2400	2550	2700	2750	2800	2850	3000

Bending Proofload Tables: MSR and MEL Minimum Required Load. pounds

SPIB MECHANICALLY GRADED LUMBER PROCEDURES

06/20

SPIB MECHANICALLY GRADED LUMBER PROCEDURES

Tension Proofload Tables: MSR and ME	
Minimum Required Load, pounds	

Look up proofload based on the TENSION value associated with the grade being produced Ft 2x6 2x8 2x10 2x12 Ft 2x4 425 4,690 7,360 9,710 12,380 15,060 425 450 4,960 7,800 10,280 13,110 15,950 450 475 5,240 8,230 10,850 13,840 16,830 475 14,570 17,720 500 500 5,510 8,660 11,420 575 6,340 9,960 13,130 16,750 20,380 575 600 6,620 10,400 13,700 17,480 21,260 600 650 7,170 11,260 14,840 18,940 23,030 650 700 7,720 12,130 15,990 20,400 24,810 700 725 7,990 12,560 16,560 25,690 725 21,120 750 12,990 17,130 750 8,270 21,850 26,580 800 8,820 23,310 28,350 800 13,860 18,270 825 9,100 14,290 18,840 24,040 29,240 825 850 9,370 14.730 19,410 24,770 30,120 850 900 9,920 15,590 20,550 26,220 31,890 900 950 10,470 16,460 21,700 27,680 33,670 950 1000 11,030 17,330 22,840 29,140 35,440 1000 29,720 1020 11,250 17,670 23,290 36,150 1020 1050 11,580 18,190 23,980 30,590 37,210 1050 1100 12,130 19,060 25,120 32,050 38,980 1100 1175 12,950 20,360 26,830 34,240 41,640 1175 1200 13,230 20,790 27,410 34,970 42,530 1200 1250 13,780 21,660 28,550 36,420 44,300 1250 14,330 29,690 1300 1300 22,520 37,880 46,070 48,730 1375 15,160 23,820 31,400 40,060 1375 1400 15,440 31,970 40,790 49,610 1400 24,260 1575 17,360 27,290 35,970 45,890 55,810 1575 1600 1600 17,640 27,720 36,540 56,700 46,620 1750 19,290 30,320 39,970 50,990 62,020 1750 1800 19,850 31,190 52,450 63,790 1800 41,110 1900 20,950 32,920 43,390 55,360 67,330 1900 1925 21,220 33,350 43,960 56,090 68,220 1925 2000 22,050 34,650 45,680 70,880 2000 58,280 2050 22,600 35,520 46,820 59,730 72,650 2050 2150 23,700 37,250 49,100 62,650 76,190 2150 2300 25,360 39,850 52,530 67,020 81,510 2300 2400 2400 26,460 41,580 54,810 69,930 85,050

06/20

APPENDIX C - CUSUM QUALITY CONTROL

This appendix includes instructions and sample quality control forms that are used to implement the CUSUM quality control process for monitoring the mechanical properties of mechanically graded lumber. Various sets of forms are available, depending on the type of production machine and which properties are being tested. The forms in this appendix are presented as an example of the CUSUM process.

Also included in this appendix are the forms and procedures used to implement the CUSUM quality control process for monitoring the average specific gravity of mechanically graded lumber.

The following table provides the CUSUM constants that are referred to in the instructions and used in the CUSUM process.

	Value	s for use wit	h CUSUM F	orms		
Grade E	Designation	V	V	Х	Y	Z
x 10 ⁶ psi	_	MEL	MSR			
1.0	100	75	82	950	84	296
1.1	110	83	90	1050	103	314
1.2	120	90	98	1150	120	333
1.3	130	98	106	1250	141	356
1.4	140	105	115	1350	163	378
1.5	150	113	123	1450	186	402
1.6	160	120	131	1550	211	428
1.7	170	128	139	1650	236	455
1.8	180	135	147	1750	262	483
1.9	190	143	156	1850	288	511
2.0	200	150	164	1950	316	542
2.1	210	158	172	2050	344	574
2.2	220	165	180	2150	372	606
2.3	230	173	188	2250	400	638
2.4	240	180	197	2350	428	670

IN-PLANT QUALITY CONTROL CUSUM INSTRUCTIONS for AVERAGE E, MINIMUM E, MOR & UTS

06/20

Sampling and testing procedures for in-plant quality control for mechanically graded lumber are given in Section 8.0 of the *SPIB Mechanically Graded Lumber Procedures*. Standard forms are available from SPIB for entering daily test results.

All properties normally tested for daily quality control must remain "in-control" at all times. The CUSUM constants (W, X, Y and Z) are found in Appendix C of the *SPIB Mechanically Graded Lumber Procedures.* Once the data for each property has been entered, the following instructions shall be used to determine process control.

AVG MOE	AVERAGE E, Directions for Entering CUSUM 1. If the sum is 0 or less, enter 0. 2. If the sum is less than Y but greater than 0, enter sum. 3. If the sum is X or more enter 7: the process is out-of-control
MOL	3. If the sum is Y or more, enter Z; the process is out-of-control.

MIN	MINIMUM E, Directions for Entering Pieces below W 1. Enter total pieces below W
MOE	 If the total is 1 or less, the process is in-control. If the total is 2 or more, the process is out-of-control.

	MOR, UTS or UCS, Directions for entering Failures
	(These requirements apply to each property separately.)
	1. Enter number of pieces failing below proofload.
or	2. If the total is 1 or less, the process is in-control.
	3. If the total is 2 or more, the process is out-of-control.
013	4. If one piece fails in each of three consecutive five-piece samples, the
	process will be assumed out-of-control.

If an out-of-control situation arises, refer to the CUSUM OUT-OF-CONTROL INSTRUCTIONS.

SPIB Form #403

SPIB MECHANICALLY GRADED LUMBER PROCEDURES

06/20

SOUTHERN PINE INSPECTION BUREAU

Mill:						_ L	ocation	:		Date:						
MSR Qua	lity Control					f		Е		Siz	e			_		
CUSUM I	FOR AVER	AGE E		X:			Y:		1	Z	:	1		1		
Date																
Shift / Time	e															
E Values / 1	MC															
(3 digits)																
"																
"																
"																-
Total																
Total																-
Average (4	digits)															
Last CUSU	М															
X																-
Subtotal																-
Average (fr	rom above)															-
Sum																-
CUSUM																-
Minumum	E				W=	I								I		-
Pcs. Below	W															-
MOR Leng	gth:Prrofload	8':			10'-12	2':			14':			16'-20':				-
Length	_															-
Test Result	s															-
"																-
"																-
"																-
"																
Failures					<u> </u>											-
	AVG / E															-
Machine																-
Settings	MOR															_
In Comb W	Zith															_
	D.															
OF EKATU																_
SUPERVIS																

	Mill:								Size:		Grade:		
	Location:								Fb:	Щ		Ft:	
memory and solution and solution participation partito participation participation participation participation particip	Date	D)ate/Time										
MOE, MC Rentinge MOE, MC Rentin MOE, MC Rentin <td>This sheet to be used ONLY when</td> <td></td> <td></td> <td>CUSUM for AVG E</td> <td>Proof Loading</td> <td>CUSUM for AVG E</td> <td>Proof Loading</td> <td>CUSUM for AVG E</td> <td>Proof Loading</td> <td>CUSUM for AVG E</td> <td>Proof Loading</td> <td>CUSUM for AVG E</td> <td>Proo Loadi</td>	This sheet to be used ONLY when			CUSUM for AVG E	Proof Loading	CUSUM for AVG E	Proo Loadi						
interfactorestionationationationationationationationa	this grade is produced in			MOE \ MC	Bending	MOE \ MC	Bendiı						
cata: 3 digio 1 · <t< td=""><td>combination with:</td><td>E Value</td><td>ss / MC</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	combination with:	E Value	ss / MC										
Grades: ···· ·	Grade:	(3 digit:	s)										
Gradie: i </td <td>Grade:</td> <td>=</td> <td></td>	Grade:	=											
	Grade:	=											
CURNANTS: Image: Imag		=											
CONSTANTS Total Tables Failures Failures <th< td=""><td>CUSUM</td><td></td><td>Total</td><td></td><td># of MOR</td><td></td><td># of MOR</td><td></td><td># of MOR</td><td></td><td># of MOR</td><td></td><td># of MO</td></th<>	CUSUM		Total		# of MOR		# of MO						
	CONSTANTS:		Total		Failures								
Y:: lat(CSUM Tension Tension Tension Tension Tension Tension Tension Tension Z Imate: Imat: Imat: Imat:	X:	- Aver	age (4 digits)										
2 L X </td <td>Y:</td> <td>Last CL</td> <td>IS UM</td> <td></td> <td>Tension</td> <td></td> <td>Tension</td> <td></td> <td>Tension</td> <td></td> <td>Tension</td> <td></td> <td>Tension</td>	Y:	Last CL	IS UM		Tension								
Athorna Subtotal	Z		X										
$ \begin{array}{ $			Subtotal										
w::iSunii <td>Minimum E:</td> <td></td> <td>Average</td> <td></td>	Minimum E:		Average										
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $	W:		Sum										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			CUSUM										
	PROOFLOAD LEVELS: Bending			# Pc's below W	# of UTS Failures								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8':		Length:										
14: UTS/LP UTS/LP Id Id 16:-20: MOR MOR Id Id 16:-20: MOR Id Id Id Tension: Operator Id Id Id Id Tension: Supervisor Id Id Id Id Id	10'-12':	să	E / AVG										
16-201: 5 MOR MOR </td <td>14':</td> <td>guittə</td> <td>UTS / LP</td> <td></td>	14':	guittə	UTS / LP										
Tension: Operator Operator Supervisor Operator	16'-20':	s	MOR										
Supervisor	Tension:		Operator										
			Supervisor										

SOUTHERN PINE INSPECTION BUREAU

SPIB MECHANICALLY GRADED LUMBER PROCEDURES

INTENSIVE SAMPLING INSTRUCTIONS for CUSUM Forms

Intensive Sampling CUSUM forms shall be filled out after:

- Any New Qualifications (SPIB Mechanically Graded Lumber Procedures, Section 8.3)
- 2) Downward adjustments (up to 3%) from original qualified grade boundary machine settings (SPIB Mechanically Graded Lumber Procedures, Section 8.6.1(a))
- 3) Downward adjustments (more than 6%, less than 10%) from grade boundary machine settings which have been previously raised above the original qualified settings. (SPIB Mechanically Graded Lumber Procedures, Section 8.6.1 and 8.6.3)

Intensive Sampling involves taking one 5-piece sample every 2 hours for 3 shifts, or until 12 samples (totaling 60 pieces) have been tested. Monitor all three categories (Average E, Minimum E, and MOR) using the values for W, X, Y, and Z in Appendix C of the SPIB Procedures for Mechanically Graded Lumber, following all other instructions for CUSUM procedures and requirements.

SPIB MECHANICALLY GRADED LUMBER PROCEDURES

06/20

SOUTHERN PINE INSPECTION BUREAU

Mill						_	Locati	on:					Date:
MSR Qua	lity Control						1	f			Е		Size
CUSUM	FOR AVERA	GE E	 X	:	1			Y:			Z	<u>z</u> :	
Date													
Shift / Time	e												
E Values / 1	MC												
(3 digits)													
"													
"													
"													
Fotal				•									
Fotal													
Average (4	digits)								1				
ast CUSU	М								1		1		
K									1		1		۲ ۲
Subtotal													Ŭ
Average (fr	com above)												PL
Sum													IW
CUSUM													SA
Minumum	E				W=								ΥE
Pcs. Below	W												SIV
MOR Len	gth:Prrofload	8':		10"-12	2":		14':		16'	'-20":			EN
Length													
Fest Result	s												
,													
,													
,													
Failures													
	AVG / E										1		
Machine	LP / UTS								1				
Seungs	MOR								1		1		
n Comb. W	Vith								1		1		
OPERATO	R:								1				
									+		1		

SPIB Form 404

동

SOUTHERN PINE INSPECTION BUREAU

=	
- 53	
- 5	
~	

Mill:								Size:		Grade:		
Location:								Fb:	ы		Ft:	
Date		ate/Time										
This sheet to be used ONLY when			CUSUM for AVG E	Proof Loading								
this grade is produced in			MOE \ MC	Bending								
combination with:	E Value	s / MC										
Grade:	(3 digits	()										
Grade:	=											
Grade:	=											
	=											
MUSUC		Total		# of MOR								
CONSTANTS:		Total		Failures								
X:	Avera	age (4 digits)										
Y:	Last CU	ISUM		Tension								
ż		X										
		Subtotal										
Minimum E:		Average										
W:		Sum										
		CUSUM										
PROOFLOAD			# Pc's below W	# of UTS Failures								
Bending												
8':		Length:										
10'-12':	să	E / AVG										
14':	gnittə	UTS / LP										
16'-20':	s	MOR										
Tension:		Operator										
		Supervisor										
SPIB Form #405					INI	ENSIVE	SAMPLI	NG				

SPIB MECHANICALLY GRADED LUMBER PROCEDURES

OUT-OF-CONTROL INSTRUCTIONS for CUSUM Forms

CUSUM 0.0.C.

1. Identify which property (AVG E, MIN E, MOR, UTS, etc.) resulted in the Out-of-Control situation.

2. EITHER: Pull six 5-piece* samples (30* pc's)

OR: Raise the machine settings no more than 3% and then pull six 5-pc samples*. Note: IF MACHINE SETTINGS ARE RAISED MORE THAN 3% DURING AN OUT-OF-CONTROL SITUATION, THE GRADE MUST BE REQUALIFIED. PRODUCTION OF THAT GRADE STOPS UNTIL IT CAN BE REQUALIFIED.

* When UTS and/or UCS are required as part of the daily quality control testing, these properties must also be monitored in the Out-of-Control situation. Appropriate additional sampling and testing must be performed.

Note: All properties normally tested for daily CUSUMs must be tested, regardless of which category caused the Out-of-Control situation. Only that category responsible for the Out-of-Control situation shall be evaluated using these specific Out-of-Control instructions. The other properties are evaluated using the daily CUSUM instructions.

3. Record the test data on the GREEN Out-of-Control CUSUM form.

	Out-of-Control for AVERAGE E: A) Copy the last CUSUM value from the daily, cream CUSUM form to the green Out-of-Control CUSUM form. THIS WILL BE THE Z VALUE. Begin testing the 5-pc samples.
avg Moe	i) When the Sum is Y or less, enter 0. The process is In-Control.ii) When the Sum is greater than Y but less than Z, enter the Sum.iii) When the Sum is greater than Z, enter Z.
	B) If the CUSUM comes down to 0 , as in (i), production may continue and recording of test results is resumed on the cream forms.C) If the CUSUM does not come down to 0, see Step 5, below.

Out-of-Control for MINIMUM E:

A) All six 5-pc* samples must be tested before the process can be considered back in control. Record the number of pieces below W for each 5-pc* sample in the space provided on the green form.

B) If no more than two pieces fall below W in the 30* pieces tested, control is regained and production may continue.

C) If three or more pieces fall below W in the 30* pieces tested, the process is still Out-of-Control. See Step 5, below.

MOR or UTS	 Out-of-Control for MOR, UTS or UCS (Proofload): (Each property is evaluated separately. These instructions apply only to the property which caused the Out-of-Control situation.) A) All six 5-pc* samples must be tested before the process can be considered back in control. Record the number of pieces below the required proofload for each 5-pc* sample in the space provided on the green form. B) If no more than two pieces fail in the 30* tested pieces, production may continue.
	C) If three or more pieces fail in the 30* tested pieces, the process is still Out- of-Control. See Step 5, below.

5. If the process is still Out-of-Control and the machine settings have not been raised, the settings may be raised no more than 3% and another six 5-pc* samples may be pulled. If the machine settings have already been raised, no further adjustment may be made, but another set of six 5-pc* samples may be pulled. Testing of the additional samples continues as above.

6. A maximum of three sets of six 5-pc* samples may be tested to regain control: one set before any machine adjustment and up to two sets after a single machine adjustment of no more than 3%.

7. Control is regained only if all properties are in control. If control is not regained, The facility supervisor should be called and production of mechanically graded lumber shall be stopped. Note the time and date of stoppage. Contact SPIB immediately. The grade must be requalified. The mechanically graded lumber produced between the last "in-control" test (prior to the first "out-of-control" test) and the production stoppage is off-grade. Grade-marks must be obliterated and the material regraded.

* When UTS and/or UCS are required as part of the daily quality control testing, these properties must also be monitored in the Out-of-Control situation. Appropriate additional sampling and testing must be performed.

SPIB MECHANICALLY GRADED LUMBER PROCEDURES

06/20

SOUTHERN PINE INSPECTION BUREAU

Mill:						 Locat	ion:						Date:
MSR Qual	lity Control						f			Е		S	ize
CUSUM I	FOR AVERA	GE E	 X:				Y:				Z:		
Date													
Shift / Time	;												
E Values / I	MC												
(3 digits)													
"													
"													
"													
Total		<u> </u>											
Total													
Average (4	digits)												
Last CUSU	М												
Х													
Subtotal													Ľ
Average (fr	om above)												RO
Sum													Ez
CUSUM													Į O
Minumum 1	E				W=					<u> </u>			U L
Pcs. Below	W												Ō
MOR Leng	gth:Prrofload	8':	 10	"-12	":	14':		16"-2	0":				LU
Length													0
Test Result	s												
"													
"													
"										1			
"										1			
Failures										İ			
	AVG / E												
Machine Settings	LP / UTS									1			
Settings	MOR									1			
In Comb. W	7ith												
OPERATO	R:												
SUPERVIS	OR:												

SPIB Form #407

Mill:								Size:		Grade:		
Location:								Fb:	Ë		Ft:	
Date		hate/Time										
This sheet to be used ONLY when			CUSUM for AVG E	Proof Loading								
this grade is produced in			MOE \ MC	Bending	$MOE \setminus MC$	Bending	MOE \ MC	Bending	MOE \ MC	Bending	MOE \ MC	Bending
combination with:	E Value	ss / MC										
Grade:	(3 digit:	s)										
Grade:	-											
Grade:	-											
	-											
CUSUM		Total		# of MOR								
CONSTANTS:		Total		Failures								
X:	Aver	age (4 digits)										
Y:	Last CL	NUS		Tension								
Z:		X										
		Subtotal										
Minimum E:		Average										
W:		Sum										
		CUSUM										
PROOFLOAD			# Pc's below W	# of UTS Failures								
LE VELS: Bending												
8':		Length:										
10'-12':	sā	E / AVG										
14':	guittə	UTS / LP										
16'-20':	S	MOR										
Tension:		Operator										
		Supervisor										
SPIB Form #408	l				0	UT-OF-C	ONTRO	L				

SOUTHERN PINE INSPECTION BUREAU

SPIB MECHANICALLY GRADED LUMBER PROCEDURES

06/20

C-11

SPECIFIC GRAVITY QUALITY CONTROL

Specific gravity data shall be collected in accordance with Section 5.8 of the SPIB Mechanically Graded Lumber Procedures. The data shall be entered on the Specific Gravity Quality Control Form, shown on page C-10. The Specific Gravity value shall be converted to oven-dry weight and volume basis using the table or the equation given on page C-11.

The CUSUM constants (X, Y, and Z) for monitoring average specific gravity are provided in the following table:

Average	v	V	7
specific Gravity	۸	ľ	L
0.55	0.530	0.075	0.161
0.56	0.540	0.077	0.164
0.57	0.550	0.079	0.166
0.58	0.560	0.084	0.171
0.59	0.570	0.085	0.172
0.60	0.580	0.087	0.174
0.61	0.590	0.090	0.177
0.62	0.600	0.092	0.179
0.63	0.610	0.096	0.183

			7%	8%	9%6	10%	11%	12%	13%	14%	15%	16%	17%	18%	19%	20%	21%
		0.70	0.73	0.74	0.74	0.75	0.75	0.76	0.76	0.77	0.77	0.78	0.78	0.79	0.80	0.80	0.81
		0.68	0.71	0.72	0.72	0.72	0.73	0.73	0.74	0.74	0.75	0.75	0.76	0.76	0.77	0.77	0.78
		0.66	0.69	0.69	0.70	0.70	0.71	0.71	0.72	0.72	0.72	0.73	0.73	0.74	0.74	0.75	0.75
		0.64	0.67	0.67	0.67	0.68	0.68	0.69	0.69	0.70	0.70	0.70	0.71	0.71	0.72	0.72	0.73
sis	test)	0.62	0.65	0.65	0.65	0.66	0.66	0.66	0.67	0.67	0.68	0.68	0.68	0.69	0.69	0.70	0.70
Dry Ba	at time of	0.60	0.62	0.63	0.63	0.63	0.64	0.64	0.65	0.65	0.65	0.66	0.66	0.66	0.67	0.67	0.68
Oven-]	volume a	0.58	0.60	0.61	0.61	0.61	0.62	0.62	0.62	0.63	0.63	0.63	0.64	0.64	0.64	0.65	0.65
wity to	(based on	0.56	0.58	0.58	0.59	0.59	0.59	0.60	0.60	0.60	0.61	0.61	0.61	0.62	0.62	0.62	0.63
ific Gra	e of Test	0.54	0.56	0.56	0.56	0.57	0.57	0.57	0.58	0.58	0.58	0.59	0.59	0.59	0.59	0.60	0.60
g Speci	ty at Time	0.52	0.54	0.54	0.54	0.55	0.55	0.55	0.55	0.56	0.56	0.56	0.56	0.57	0.57	0.57	0.58
nvertin	fic Gravit	0.50	0.52	0.52	0.52	0.52	0.53	0.53	0.53	0.53	0.54	0.54	0.54	0.54	0.55	0.55	0.55
C01	Speci	0.48	0.49	0.50	0.50	0.50	0.50	0.51	0.51	0.51	0.51	0.52	0.52	0.52	0.52	0.53	0.53
		0.46	0.47	0.48	0.48	0.48	0.48	0.48	0.49	0.49	0.49	0.49	0.49	0.50	0.50	0.50	0.50
		0.44	0.45	0.45	0.46	0.46	0.46	0.46	0.46	0.47	0.47	0.47	0.47	0.47	0.48	0.48	0.48
		0.42	0.43	0.43	0.43	0.44	0.44	0.44	0.44	0.44	0.45	0.45	0.45	0.45	0.45	0.45	0.46
		0.40	0.41	0.41	0.41	0.41	0.42	0.42	0.42	0.42	0.42	0.42	0.43	0.43	0.43	0.43	0.43
	UV.		7%	8%	9%6	10%	11%	12%	13%	14%	15%	16%	17%	18%	19%	20%	21%

C-13

 $SG_{0D} = \frac{SG_{test}}{(1-(SG_{test}*MC*0.009))}$

Per ASTM D2395

APPENDIX D - OUT-OF-CONTROL FLOWCHARTS

This Appendix includes three flowcharts, which describe the out-of-control procedures and tests required.

Appendix D1	D-2
Appendix D2	D-3
Appendix D3	D-4

SPIB MECHANICALLY GRADED LUMBER PROCEDURES

APPENDIX E - AGENCY FORMS

This Appendix includes example forms used by SPIB for Test Inspections and Grade Qualification (Qualification) Tests for MSR and MEL.

Test Inspection	E-2
Qualification Form	E-3

)	SPIB A	Nechanically Grad	ded Lumb ON	er			1/4
Co	mpany:			Lc	cation:		Date	e:		
МG	R/SUPT:				Quality Su	upervisor:_				
	Test	ed Grade	;	1	Tested Grade		Size:			
Grad	e Name	;		Grad	e Name		Test Span:			
Edge	Knot			Edge	Knot		Gauge Le	ngth:		
	CLT	AVG			Ecoustic			Requ	ired	Actual*
GS	CLI	LP		St	A-Grader		AVGE			
Ž		MOE		hold	LHG		MORPL			
SEI	XLG	UTS		Ires	Jenny Ray		UTS PL			
		MOR		È	E-Valuator		MIN E			
					Timber Grader					
Grad	e Prope	rties		Fb	E	Ft	Fc//		Fc	Fv
	1				1					
Pc	мс	MOE	MOR	Knot	Comments	МС	UTS	Knot	C	Comments
1										
2										
3										
4										
5										
0										
/ 8										
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										
21										
22										
23										
24										
25	1									

APPROVED CRITERIA: Please refer to TABLES 1 & 2, QUARTERLY TEST ACCEPTANCE CRITERIA, in Tab 2 of the SPIB MSR MANUAL.

SPIB Form #421

SPIB MECHANICALLY GRADED LUMBER PROCEDURES

SPIB Mechanically Graded Lumber QUALIFICATION FORM

Q

Company:

Location:_____ Date:_____

Quality Supervisor:_____

C	Grade	e Being Qu	valified	Produc	ed With		Gro	de Being (Qualified	Produc	ed With	Size:			
	Gra	de						Grade				Test Spa	n:		
	Edge	e Knot					Ec	lge Knot				Proofloa	der:		
		AVG						Ecoustic				Property	: Ве	ending/Te	nsion
S	CLI	LP					s	A-Grader						Required	Actual*
N		MOE					plot	limber Grade				AVG E			
SET	XLG	UTS					esh	LHG				Proof Loo	bc		
		MOR					ΤΡ	E-Valuator				MIN E			
		_		1	I			Jenny Ray							
							<u> </u>	, ,							
Gra	de Pr	operties		Fb			E		Ft		Fc//		Fc		Εv
			1					1							
Р	С	МС	Knot	мо	E Loo	ad			Pc	МС	Knot	MOE	Loo	ad	
	1								28						
	2								29						
;	3								30						
	4								31						
	5								32						
	6								33						
	7								34						
1	8								35						
	9								36						
1	0								37						

	42		
	43		
	44		
	45		
	46		
	47		
	48		
	49		
	50		
	51		
	52		
	53		

SPIB Form #420

APPROVED CRITERIA: 1. Average E > (Grade E - .04 x 10₆)

2. # Failures < PL: # 1/53, 2/78, 3/102

3. # Pieces < Min E: # 1/53, 2/78, 3/102