

Quality.Together

SPIB TECHNICAL COMMITTEE JUNE 19, 2015

UPDATE ON SOUTHERN PINE DESIGN VALUES

HISTORY

- Original IGT Published: 1991
- Monitoring: 1994-2010
- Destructive Testing: 2011
 - #2 2x4
 - MOE, MOR, UTS
- Significant decreases observed

2012

- Reduced 2x4 #2 & lower design values
- Conducted New IGT
 - 2 grades, 3 sizes
 - MOE, MOR, UTS, UCS

2013-2015

• New design values published

- Monitoring:
 - #1 2x6 MOR in 2013
 - #2 2x4 MOR in 2014
 - #2 2x4 UTS in 2015

INGRADE TESTING PROTOCOL

- Test 2 grades, in each of 3 sizes
- Nondestructively evaluate stiffness (MOE)
- Destructively test for:
 - Bending Strength (MOR)
 - Tension Strength (UTS)
 - Compression Parallel to Grain (UCS)

SAMPLING

- Mills assigned to one of 16 homogeneous Southern Pine growing regions
- Includes SPIB and TP mills
- Randomly select mills in proportion to regional production
- Target sample size: 360 pieces per "cell"
- Test 10-12 pieces from each selected mill

SOUTHERN PINE REGIONS

DATA COLLECTED

- Grade
- Defect grade controlling, msrd
- Dimensions width, thickness, length
- MC
- Temperature
- Growth Characteristics rpi, %sw

DATA COLLECTED

- Bending Tests:
 - 1/3 point loading
 - Defects randomly placed
 - 17:1 span to depth ratio
 - Stiffness (MOE)
 - Strength (MOR)
 - Failure Code

DATA COLLECTED

- Tension tests
 - Tested for bending stiffness prior to UTS
 - 8' gauge length between grips
 - Failure Code

DATA ADJUSTMENTS

- MC adjusted for Temperature
- Properties adjusted to 73 °F if needed (<47°)
- Properties adjusted to 15% MC Example: for MOR > 2415 psi: $MOR_2 = MOR_1 + \frac{(MOR_1 - 2415)}{(40 - MC_1)} * (MC_1 - MC_2)$

DATA ADJUSTMENTS

 To combine data from different sizes, a "size model" is used to convert all data to a Characteristic Size: 2x8 – 12'

$$F_2 = F_1 * \left(\frac{W_1}{W_2}\right)^w * \left(\frac{L_1}{L_2}\right)^l * \left(\frac{T_1}{T_2}\right)^t$$

EXPONENTS FOR SIZE MODEL

Property	Width, w	Length, l	Thickness, t
MOR, UTS	0.29	0.14	0
UCS	0.13	0	0
MOE	0	0	0

MOE not adjusted for size No properties adjusted for thickness (applies to dimension lumber only) Compression values not adjusted for length

CONVERTING 2X4 TO 2X8

No.2 2x4, MOR = 3265 psi, 59.5" span

$$MOR_{2x8} = 3265 * \left(\frac{3.5}{7.25}\right)^{0.29} * \left(\frac{59.5}{144}\right)^{0.14}$$
$$MOR_{2x8} = 2336 \ psi$$

- Grade Quality Index determined from failure code at point of failure.
- Uses ASTM D245 equations to calculate the "strength ratio"
- Based on strength reducing characteristics:
 - Knots
 - Slope of Grain

GQI CHECK

- D1990 requires a GQI check to ensure that tested material appropriately represents the defects permitted in the grade.
 - SS grade: SR = 0.65
 - #2 grade: SR = 0.45
- Of pieces for which SR can be calculated, the 5th percentile must be within +/- 7 points of target

NONPARAMETRIC STATISTICS

- We do not assume a "normal" (or any other) statistical distribution.
- Use "order statistics" to estimate values of interest.
- Permits analysis without actually breaking every piece.

5TH PERCENTILE

- Rank order all data from lowest to highest.
- (5% * sample size) is approximately the order statistic of the 5th percentile "point estimate".
- Example: 100 pieces broken in bending. Use the 5th weakest piece to estimate the 5th percentile.

TOLERANCE LIMITS

- ASTM D1990 uses the 75% confidence tolerance limit on the 5th percentile.
- Uses data from a piece weaker than actual 5th percentile "point estimate".
- Provides increased confidence that true 5th percentile is equal to or greater than our estimate.

GRADE MODEL

- Using strength ratios, values for untested grades may be estimated.
- Tested grades:
 - SS with strength ratio of 0.65
 - #2 with strength ratio of 0.45
- Untested Grades:

- #1 (SR = 0.55), #3 (SR = 0.26), etc.

GRADE MODEL FOR ORIGINAL IGT

D1990 WILCOXON TEST

- 2014 revisions to D1990 include a statistical test to compare samples
- Compares the entire distribution not tails
- Wilcoxon test uses sum of ranks
- Data is combined from two sets and ranked
- Sum of ranks from each set is compared

WILCOXON TEST

Use the sum of the ranks to calculate a Z-value:

$$Z = \frac{\left(SumRank + \frac{1}{2}\right) - \left(m * \left(\frac{N+1}{2}\right)\right)}{\sqrt{\frac{m * n * (N+1)}{12}}}$$

Where m = sample size corresponding to SumRank n = sample size from other sample N = total sample size (m + n)

WILCOXON RESULTS

UTS	OIGT	2011	MOE	OIGT	2011
n	405	410	n	413	410
Rank Sum	182,333	150,187	Rank Sum	183,385	155,691
Avg Rank	450	366	Avg Rank	444	380
	Z = -5.09, p =	0.00		Z = -3.88, p =	0.00

#2 2x4 2015

WILCOXON RESULTS - UTS

	OIGT	2011		2011	2015		OIGT	2015
n	405	410	n	410	362	n	405	362
Rank Sum	182,333	150,187	Rank Sum	142,087	156,291	Rank Sum	154,325	140,203
Avg Rank	450	366	Avg Rank	347	432	Avg Rank	381	387
Z = -5.09, p = 0.00			Z	= -5.30, p =	= 0.00	Z	= -0.39, p =	= 0.65

WILCOXON CONCLUSIONS - UTS

- The 2011 sample is significantly different (lower) than the original IGT and the 2015 sample.
- The 2015 sample is not significantly different from the original IGT sample.

WILCOXON RESULTS - MOE

	OIGT	2011		2011	2015		OIGT	2015
n	413	410	n	410	362	n	413	362
Rank Sum	183,385	155,691	Rank Sum	146,311	152,067	Rank Sum	160,230	140,438
Avg Rank	444	380	Avg Rank	357	420	Avg Rank	388	388
Z = -3.88, p = 0.00 Z			= -3.93, p =	= 0.00	Z	= -0.01, p =	= 0.50	

WILCOXON CONCLUSIONS - MOE

- The 2011 sample is significantly different (lower) than the original IGT and the 2015 sample.
- The 2015 sample is not significantly different from the original IGT sample.
- A test looking at the entire distribution may be more appropriate for MOE (average value published) than for strength properties (5th percentile basis for design values)

OBSERVATIONS

- 2015 sample is different from 2011, but not in a downward direction
- Moisture content of samples varied
 - Data adjusted for MC
 - 2011 sample much drier
- Presence of combination knots at failure varied
- Percentage of Dense varied

COMPARING SAMPLES

	Ol	GT	20	11	2014	2015
	Bending	Tension	Bending	Tension	Bending	Tension
MOR, TL psi	3621		2547		3265	
UTS, TL psi		1867*		1445		1843
Avg E	1.56	1.51	1.35	1.39	1.50	1.51
Avg MC	14.2%	14.0%	11.1%	11.7%	14.7%	14.8%
% Dense	55%	42%	39%	40%	59%	50%
% Comb. Kt	0%	0%	22%	31%	5%	12%

* Adjusted to 8' gauge length

OBSERVATIONS

- Samples from 2011 have some fundamental differences compared to the original IGT sample and recent (2014-15) 2x4 samples.
- Much drier, many more combination knots

OBSERVATIONS

- More variability between samples than expected.
- Appears that present design values represent lower end of what could be included in the grade.

HISTORICAL RMP DATA

- Since 1994, a non-destructive monitoring program had been conducted by SPIB
- From 1994-2010, a portable E-Computer was used at mill sites to collect data
- Recently identified that flatwise, transverse vibration E is not as correlated to third-point Edge E as we would like

HISTORICAL RMP DATA

- #2 2x4
- Data was useful to detect trends over time
- Continue collecting E-Computer data in recent/future monitoring samples

Average E-Computer E

FUTURE TESTING

- Monitoring procedures added to ASTM D1990
- Requirement: Test most commonly produced size/grade every 5 years
- SPIB: Test #2 2x4 every year, alternating between bending and tension
- Test additional wider width every 3rd year

Year	Size	Grade	Property
2011	2x4	#2	E, MOR, UTS
2012	2x4, 2x8, 2x10	SS, #2	E, MOR, UTS, UCS
2013	2x6	#1	E, MOR
2014	2x4	#2	E, MOR
2015	2x4	#2	E, UTS
2016	2x4,2x8	#2	E, MOR
2017	2x4	#2	E, UTS
2018	2x4, 2x8	#2	E, MOR
2019	2x4	#2	E, UTS
2020	2x4, 2x8	#2	E, MOR

